Photon propagation in slowly varying inhomogeneous electromagnetic fields
نویسندگان
چکیده
منابع مشابه
Sound Propagation in Slowly Varying 2D Duct with Shear Flow
Sound propagation in uniformly lined straight ducts with uniform mean flow is well established by its analytically exact description in duct modes [1, 2, 3]. In cross-wise nonuniform flow there are still modes, although the (Pridmore-Brown) equation that describes them is in general not solvable in terms of standard functions [4, 5, 6, 7, 8, 9] and has to be solved numerically. These modal solu...
متن کاملOn Inhomogeneous Metamaterials Media: A New Alternative Method for Analysis of Electromagnetic Fields Propagation
The analysis of waves propagation in homogeneous anisotropic media constitutes a classical topic in every field of science and has been preferentially discussed using locally plane waves. Specific physical quantities and their behaviour laws are really what make the difference. Although the use of Fourier transform enables an approach formally analogous to that of plane waves in linear evolutio...
متن کاملOn Electromagnetic Fields in a Periodically Inhomogeneous Chiral Medium
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملQuaternionic equation for electromagnetic fields in inhomogeneous media
We show that the Maxwell equations for arbitrary inhomogeneous media are equivalent to a single quaternionic equation which can be considered as a generalization of the Vekua equation for generalized analytic functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2015
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.91.085027